Zero-sum game

Zero-sum game

We say that a game is a zero-sum game if the sum of payoffs of all players is always zero.

Product game

Player I chooses a number from ' 2 ' or ' -1 ' and player II chooses a number from ' 1 ' or ' -2 ' simultaneously. Then player II gives $\$ p$ to player I where p is the product of the two numbers. (Player 1 pays player 2 if p is negative.)

Product game

This is a zero-sum game.

Product game

We may use two matrices A and B to represent the payoffs of players I and II respectively.

$$
A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

$$
B=\left(\begin{array}{cc}
-2 & 4 \\
1 & -2
\end{array}\right)
$$

Note that B is just the negative of A.

Game matrix

Therefore we may use one single matrix to represent a zero-sum game. Suppose the payoffs of player I is represented by the matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Then the payoffs of player II is just

$$
B=-A
$$

Saddle point

We say that the entry $a_{i j}$ is a saddle point of

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

if $a_{i j}$ is the largest number in its column and the smallest number in its row, in other words

1. $a_{i j} \geq a_{k j} \quad$ for any $1 \leq k \leq m$.
2. $\quad a_{i j} \leq a_{i l} \quad$ for any $1 \leq l \leq n$.

Saddle point

Examples

Saddle point

Suppose $a_{i j}$ is a saddle point of

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

1. If player I uses the \boldsymbol{i}-th strategy, then no matter how player II plays pay off of $\mathrm{I} \geq a_{i j}$
2. If player II uses the \boldsymbol{j}-th strategy, then no matter how player I plays
pay off of $\mathrm{I} \leq a_{i j}$

Value of game

We say that the value of game is \boldsymbol{v} if

1. there exists a strategy of I, called the maximin strategy, such that no matter how II plays

$$
\text { pay off of } \mathrm{I} \geq v
$$

2. there exists a strategy of II, called the minimax strategy, such that no matter how I plays
payoff of $\mathrm{I} \leq v$

Value of game

Suppose A has a saddle point $a_{i j}$. Then the value of the game is

$$
v=a_{i j}
$$

Uniqueness of value

There can be more than one saddle point. However, the value of any two saddle points must be the same.

Theorem. Suppose $a_{i j}$ and $a_{k l}$ are saddle points. Then

$$
a_{i j}=a_{k l}
$$

Proof. Using alternatively that $a_{i j}$ and $a_{k l}$ are saddle points, we have

$$
a_{i j} \leq a_{i l} \leq a_{k l} \leq a_{k j} \leq a_{i j}
$$

Therefore

$$
a_{i j}=a_{k l}
$$

Finding saddle point

1. Write down the minimum entry of each row.
2. Write down the maximum entry of each column.
3. If the maximum of the row minima (maximin) and the minimum of the column maxima (minimax) are equal, then there is a saddle point at the corresponding entry.

Example:

Finding saddle point

Example:

There is a saddle point at the $\mathbf{3 , 3}$ entry. The value of the game is $\mathbf{- 2}$.

Finding saddle point

Example:

$$
\max \left(\begin{array}{cccc|c}
2 & -2 & 3 & 5 \\
7 & 1 & -4 & 3 & -2 \\
-2 & -3 & 0 & 2 & -4 \\
1 & 0 & 4 & -2 & -3 \\
7 & 1 & 4 & 5 & -2 \\
& 7 &
\end{array}\right.
$$

The maximin and minimax are not equal.
The game has no saddle point.

Pure and mixed strategies

Pure strategy
 Constantly using one strategy.

Mixed strategy
Using different strategies according to certain probabilities.

Pure and mixed strategies

Suppose I has m strategies and II has n strategies (the game is represented by an m by n matrix). Then a mixed strategy of I is a vector

$$
\mathbf{p}=\left(p_{1}, p_{2}, \cdots, p_{m}\right)
$$

where

$$
\begin{aligned}
& \text { 1. } 0 \leq p_{i} \leq 1 \text { for any } i=1,2, \cdots, m \\
& \text { 2. } p_{1}+p_{2}+\cdots+p_{m}=1
\end{aligned}
$$

Here $\boldsymbol{p}_{\boldsymbol{i}}$ is the probability that I uses the \boldsymbol{i}-th strategy.

Pure and mixed strategies

Similarly a mixed strategy of II is

$$
\mathbf{q}=\left(q_{1}, q_{2}, \cdots, q_{n}\right)
$$

Note that a pure strategy is also a mixed strategy with one of p_{i} 's equal to 1 and all other p_{i} 's equal to 0 .

Pure and mixed strategies

Recall that if I uses $\mathbf{p}=\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ and II uses $\mathbf{q}=\left(q_{1}, q_{2}, \cdots, q_{n}\right)$, then the expected payoff of I is
$E\left(P_{A}\right)=a_{11} p_{1} q_{1}+a_{12} p_{1} q_{2}+\cdots+a_{k l} p_{k} q_{l}+\cdots+a_{m n} x_{m} y_{n}$

$$
=\left(\begin{array}{llll}
p_{1} & p_{2} & \cdots & p_{m}
\end{array}\right)\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
q_{2} \\
\vdots \\
q_{n}
\end{array}\right)
$$

$$
=\mathbf{p} A \mathbf{q}^{T}
$$

Minimax theorem

For any finite two-person zero-sum game, the value of the game exists. In other words, there exists real number v such that

1. there exists mixed strategy of I, which is called maximin strategy, such that the payoff of I is at least \boldsymbol{v} no matter how II plays,
2. there exists mixed strategy of II, which is called minimax strategy, such that the payoff of I is at most v no matter how I plays.

2-by-2 game

To solve 2-by-2 game

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

1. Find if there is a saddle point.
2. If there is no saddle point, suppose I uses

$$
\mathbf{p}=(p, 1-p), \quad 0 \leq p \leq 1
$$

2-by-2 game

$$
\begin{aligned}
\mathbf{p} A & =(p, 1-p)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \\
& =(a p+(1-p) c, b p+(1-p) d) \\
& =((a-c) p+c,(b-d) p+d)
\end{aligned}
$$

That means the payoff of I is

1. $(a-c) p+c$ if II uses $1^{\text {st }}$ strategy.
2. $(b-d) p+d$ if II uses $2^{\text {nd }}$ strategy.

2-by-2 game

Now if

$$
\begin{aligned}
(a-c) p+c & =(b-d) p+d \\
(a-b+d-c) p & =d-c \\
p & =\frac{d-c}{a-b+d-c}
\end{aligned}
$$

then the payoff of I will be fixed no matter how II plays.

2-by-2 game

In this case the payoff of I is always

$$
\begin{aligned}
(a-c) p+c & =(a-c)\left(\frac{d-c}{a-b+d-c}\right)+c \\
& =\frac{\left(a d-a c-c d+c^{2}\right)+\left(a c-b c+c d-c^{2}\right)}{a-b+d-c} \\
& =\frac{a d-b c}{a-b+d-c}
\end{aligned}
$$

no matter how II plays.

2-by-2 game

Similarly suppose II uses

$$
\mathrm{q}=(q, 1-q), \quad 0 \leq q \leq 1
$$

Then the payoff of I is given by the vector

$$
\left.\begin{array}{rlr}
A \mathbf{q}^{\mathrm{T}} & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{q}{1-q} \\
& =\binom{a q+b(1-q)}{c q+d(1-q)} & \\
& =\binom{(a-b) q+b^{2}}{(c-d) q+d} & \\
\text { payoffs of I if I } \\
\text { uses } 1^{\text {st }} \text { strategy }
\end{array}\right)
$$

2-by-2 game

When

$$
\begin{aligned}
(a-b) q+b & =(c-d) q+d \\
(a-b+d-c) q & =d-b \\
q & =\frac{d-b}{a-b+d-c}
\end{aligned}
$$

no matter how I plays, the payoff of I will be

$$
\begin{aligned}
(a-b) q+b & =(a-b)\left(\frac{d-b}{a-b+d-c}\right)+c \\
& =\frac{a d-b c}{a-b+d-c}
\end{aligned}
$$

Solution of 2-by-2 game

If the 2-by-2 game $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ has no saddle point, then its value is

$$
v=\frac{a d-b c}{a-b+d-c}
$$

1. maximin strategy for I:

$$
\mathbf{p}=\left(\frac{d-c}{a-b+d-c}, \frac{a-b}{a-b+d-c}\right)
$$

The payoff of I is equal to \boldsymbol{v} no matter how II plays.
2. minimax strategy for II:

$$
\mathbf{q}=\left(\frac{d-b}{a-b+d-c}, \frac{a-c}{a-b+d-c}\right)
$$

The payoff of I is equal to \boldsymbol{v} no matter how I plays.

Product game

Player I chooses two numbers ' 2 ' or ' -1 ' and player II chooses two numbers ' 1 ' or ' -2 ' simultaneously. Then player II gives $\$ p$ to player I where p is the product of the two numbers. (Player I pays player II if p is negative.)

Game matrix

Strategy of player I: "2", "-1"
Strategy of player II: "1", "-2"
The payoffs of I is given by the game matrix

$$
A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

The payoff matrix of II is

$$
B=-A=\left(\begin{array}{cc}
-2 & 4 \\
1 & -2
\end{array}\right)
$$

Solution

The matrix A has no saddle point.
Suppose I uses

$$
\mathbf{p}=(p, 1-p), \quad 0 \leq p \leq 1
$$

The payoff of I is given by the row vector

$$
\begin{aligned}
\mathbf{p} A & =\left(\begin{array}{ll}
p & 1-p
\end{array}\right)\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right) \\
& =(2 p-(1-p)-4 p+2(1-p)) \\
& =(3 p-1-6 p+2)
\end{aligned}
$$

Solution

The payoff of I will be fixed no matter how II plays if

$$
\begin{aligned}
3 p-1 & =-6 p+2 \\
9 p & =3 \\
p & =\frac{1}{3}
\end{aligned}
$$

Now

$$
\left(\begin{array}{ll}
\frac{1}{3} & \frac{2}{3}
\end{array}\right)\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{ll}
0 & 0
\end{array}\right)
$$

Hence if I uses $(1 / 3,2 / 3)$, his payoff will be 0 no matter how II plays.

Solution

Similarly suppose II uses

$$
\mathrm{q}=(q, 1-q), \quad 0 \leq q \leq 1
$$

The payoff of II is given by the column vector

$$
\begin{aligned}
A q^{\mathrm{T}} & =\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)\binom{q}{1-q} \\
& =\binom{2 q-4(1-q)}{-q+2(1-q)} \\
& =\binom{6 q-4}{-3 q+2}
\end{aligned}
$$

Solution

The payoff of I will be fixed no matter how I plays if

$$
\begin{aligned}
6 q-4 & =-3 q+2 \\
9 q & =6 \\
q & =\frac{2}{3}
\end{aligned}
$$

Now

$$
\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)\binom{2 / 3}{1 / 3}=\binom{0}{0}
$$

Hence if II uses $(2 / 3,1 / 3)$, the payoff of I will be 0 no matter how I plays.

Solution

Therefore the value of the game matrix

$$
A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

is

$$
v=0
$$

1. When I uses $(1 / 3,2 / 3)$, the payoff of I is 0 no matter how II plays.
2. When II uses $(2 / 3,1 / 3)$, the payoff of I is 0 no matter how I plays.

Using formulas

One may solve the game

$$
A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

using the formulas derived previously.
The value of the game is

$$
v=\frac{a d-b c}{a-b+d-c}=\frac{2(2)-(-4)(-1)}{2-(-4)+2-(-1)}=0
$$

Using formulas

$$
A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

1. The maximin strategy for I is

$$
\begin{aligned}
\mathbf{p} & =\left(\frac{d-c}{a-b+d-c}, \frac{a-b}{a-b+d-c}\right) \\
& =\left(\frac{2-(-1)}{2-(-4)+2-(-1)}, \frac{2-(-4)}{2-(-4)+2-(-1)}\right) \\
& =\left(\frac{1}{3}, \frac{2}{3}\right)
\end{aligned}
$$

Using formulas

$$
A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

2. The minimax strategy for II is

$$
\begin{aligned}
\mathbf{q} & =\left(\frac{d-b}{a-b+d-c}, \frac{a-c}{a-b+d-c}\right) \\
& =\left(\frac{2-(-4)}{2-(-4)+2-(-1)}, \frac{2-(-1)}{2-(-4)+2-(-1)}\right) \\
& =\left(\frac{2}{3}, \frac{1}{3}\right)
\end{aligned}
$$

Oddment method

$$
A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)-\begin{gathered}
6 \\
-3
\end{gathered} \quad \begin{aligned}
& \text { difference of } \\
& \text { entries in rows }
\end{aligned}
$$

difference of
entries in columns

Oddment method

Oddment method

$$
A=\underbrace{\substack{-4 \\ \text { forget the signs }}}_{\substack{2 \\-1 \\ 3 \\ 3 \\ \hline \\ \times \\ \hline \\ \text { Interchange and }}}
$$

Oddment method

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)_{-3}^{6} \times \frac{3}{6} \begin{array}{|c}
1 / 3 \\
2 / 3 \\
\hline
\end{array} \\
& 3-6 \\
& \times \\
& \begin{array}{ll}
6 & 3 \\
2 / 3 & 1 / 3
\end{array} \begin{array}{l}
\text { Ratios of the numb } \\
\text { give the strategies. }
\end{array}
\end{aligned}
$$

Oddment method

Example

Solve the 2-by-2 game

$$
A=\left(\begin{array}{cc}
5 & -3 \\
2 & 4
\end{array}\right)
$$

Example

$$
\begin{aligned}
& \left(\begin{array}{cc}
5 & -3 \\
2 & 4
\end{array}\right)-2 \times \begin{array}{cc}
8 \\
3 & 0.2 \\
3 & -7
\end{array} \\
& \quad \times \\
& 7 \\
& 7
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { maximin strategy for } \mathrm{I} \text { : } \\
& \mathbf{p}=(0.2,0.8) \\
& \text { minimax strategy for II: } \\
& \mathbf{q}=(0.7,0.3) \longrightarrow \begin{array}{|cc|}
0.7 & 0.3
\end{array}
\end{aligned}
$$

value of the game:

$$
v=2.6
$$

$$
\begin{aligned}
\mathbf{p} A & =\left(\begin{array}{ll}
0.2 & 0.8
\end{array}\right)\left(\begin{array}{cc}
5 & -3 \\
2 & 4
\end{array}\right)=\left(\begin{array}{ll}
2.6 & 2.6
\end{array}\right) \\
A \mathbf{q}^{\mathrm{T}} & =\left(\begin{array}{cc}
5 & -3 \\
2 & 4
\end{array}\right)\binom{0.7}{0.3}=\binom{2.6}{2.6}
\end{aligned}
$$

Modified rock-paper-scissors

Player I strategies: Rock (R), Paper (P)
Player II strategies: Rock (R), Scissors (S)

Modified rock-paper-scissors

The payoff matrix of Player I is

$$
A=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)
$$

The payoff of Player II is just its negative

$$
B=-A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 1
\end{array}\right)
$$

Modified rock-paper-scissors

Suppose Player II uses strategy (0.2,0.8).
Calculate

$$
A \mathbf{q}^{T}=\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\binom{0.2}{0.8}=\binom{0.8}{-0.6}
$$

The expected payoff of Player I is $\mathbf{0 . 8}$ if he uses rock(R). The expected payoff of Player I is $\mathbf{- 0 . 6}$ if he uses $\operatorname{rock}(P)$.

Modified rock-paper-scissors

Suppose Player I uses strategy ($\mathbf{(0 . 4 , 0 . 6}$) and Player II uses strategy (0.2,0.8). The expected payoff of Player I is

$$
\begin{aligned}
\mathbf{p} A \mathbf{q}^{T} & =\left(\begin{array}{ll}
0.4 & 0.6
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\binom{0.2}{0.8} \\
& =\left(\begin{array}{ll}
0.4 & 0.6
\end{array}\right)\binom{0.8}{-0.6} \\
& =-0.04
\end{aligned}
$$

The expected payoff of Player II is $\mathbf{0 . 0 4}$.

Modified rock-paper-scissors

Let $\mathbf{p}=(p, 1-p)$

$$
\begin{aligned}
\mathbf{p} A & =\left(\begin{array}{ll}
p & 1-p
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1-p & p-(1-p)
\end{array}\right) \\
& =\left(\begin{array}{ll}
1-p & 2 p-1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
1-p & =2 p-1 \\
3 p & =2 \\
p & =\frac{2}{3}
\end{aligned}
$$

Therefore the maximin strategy for I is $\mathbf{p}=\left(\frac{2}{3}, \frac{1}{3}\right)$

Modified rock-paper-scissors

Let $\mathbf{q}=(q, 1-q)$

$$
\begin{aligned}
A \mathbf{q}^{\mathrm{T}} & =\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\binom{q}{1-q} \\
& =\binom{1-q}{2 q-1}
\end{aligned}
$$

Equating

$$
\begin{aligned}
1-q & =2 q-1 \\
3 q & =2 \\
q & =\frac{2}{3}
\end{aligned}
$$

Therefore the minimax strategy for II is $\mathbf{q}=\left(\frac{2}{3}, \frac{1}{3}\right)$

Modified rock-paper-scissors

Now

$$
\begin{aligned}
\mathbf{p} A & =\left(\begin{array}{ll}
\frac{2}{3} & \frac{1}{3}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
\frac{1}{3} & \frac{1}{3}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
A \mathbf{q}^{\mathrm{T}} & =\left(\begin{array}{cc}
0 & 1 \\
1 & -1
\end{array}\right)\binom{2 / 3}{1 / 3} \\
& =\binom{1 / 3}{1 / 3}
\end{aligned}
$$

The value of the game is

$$
v=\frac{1}{3}
$$

Modified rock-paper-scissors

We may also use the formulas. First we calculate

$$
a-b+d-c=0-1+(-1)-1=-3
$$

Then

$$
\begin{aligned}
& \mathbf{p = (\frac { d - c } { a - b + d - c } , \frac { a - b } { a - b + d - c }) = (\frac { - 1 - 1 } { - 3 } , \frac { 0 - 1 } { - 3 }) = (\frac { 2 } { 3 } , \frac { 1 } { 3 })} \\
& \mathbf{q}=\left(\frac{d-b}{a-b+d-c}, \frac{a-c}{a-b+d-c}\right)=\left(\frac{-1-1}{-3}, \frac{0-1}{-3}\right)=\left(\frac{2}{3}, \frac{1}{3}\right) \\
& v=\frac{a d-b c}{a-b+d-c}=\frac{0(-1)-(-1)(-1)}{-3}=\frac{1}{3}
\end{aligned}
$$

Modified rock-paper-scissors

2-by-n game

Consider the 2-by- n game

$$
A=\left(\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n}
\end{array}\right)
$$

Assume that \boldsymbol{A} has no saddle point. Suppose I uses

$$
\mathbf{p}=(p, 1-p), \quad 0 \leq p \leq 1
$$

2-by-n game

Consider

$$
\begin{aligned}
\mathbf{p} A & =\left(\begin{array}{ll}
p & 1-p
\end{array}\right)\left(\begin{array}{llll}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n}
\end{array}\right) \\
& =\left(a_{11} p+a_{21}(1-p)\right. \\
\cdots & \left.a_{1 n} p+a_{2 n}(1-p)\right)
\end{aligned}
$$

Then II would use the \boldsymbol{k}-th strategy so that

$$
a_{1 k} p+a_{2 k}(1-p)
$$

is minimum among the entries in $\mathbf{p} A$.

2-by-n game

Then player I may guarantee that his payoff is at least

$$
\min _{1 \leq k \leq n}\left\{a_{1 k} p+a_{2 k}(1-p)\right\}
$$

The above expression simply means the minimum value of the entries in $\mathbf{p} A$.

The maximin strategy of I will be corresponding to a value of \boldsymbol{p} so that the above expression is maximum.

2-by-n game

The problem can be solved graphically.

1. For each $j=1,2, \ldots, n$, draw the straight line

$$
y=a_{1 j} x+a_{2 j}(1-x), \quad 0 \leq x \leq 1
$$

2. Draw the polygonal curve for

$$
y=\min _{1 \leq k \leq n}\left\{a_{1 k} p+a_{2 k}(1-p)\right\}
$$

3. Find \boldsymbol{p} for which the above expression attains it maximum.
4. Find the maximin strategy for I, the minimax strategy for II and the value of the game.

Example 1

Solve the game matrix

$$
A=\left(\begin{array}{cccc}
-1 & 5 & 3 & 2 \\
6 & -1 & 0 & 4
\end{array}\right)
$$

Example 1

$$
A=\binom{-1}{6}
$$

1. Draw a line for each column.

Example 1

$$
A=\left(\begin{array}{cc|c}
-1 & 5 & 3 \\
6 & -1 & 2 \\
0
\end{array}\right)
$$

1. Draw a line for each column.

Example 1

$$
A=\left(\begin{array}{cccc}
-1 & 5 & 3 & 2 \\
6 & -1 & 0 & 4
\end{array}\right)
$$

1. Draw a line for each column.

Example 1

$$
A=\left(\begin{array}{cccc}
-1 & 5 & 3 & 2 \\
6 & -1 & 0 & 4
\end{array}\right)
$$

2. Draw the polygonal curve for minimum y.

Example 1

$$
A=\left(\begin{array}{cccc}
-1 & 5 & 3 & 2 \\
6 & -1 & 0 & 4
\end{array}\right)
$$

3. Find the value of \boldsymbol{p} for the maximum point.

Example 1

$$
A=\left(\begin{array}{cccc}
\begin{array}{|c}
-1 \\
6
\end{array} & 5 & 3 & 2 \\
0 & -1 & 0 & 4
\end{array}\right)
$$

3. Find the value of \boldsymbol{p} for the maximum point.

Example 1

The value of p and v can also be obtained by solving

$$
\left\{\begin{aligned}
y=3 x \\
y=-x+6(1-x)
\end{aligned} \Rightarrow \begin{array}{rl}
3 x & =-x+6-6 x \\
10 x & =6 \\
x & =0.6 \\
y & =3(0.6)=1.8
\end{array}\right.
$$

Therefore

$$
p=0.6 \text { and } v=1.8
$$

Example 1

We may also reduce

$$
A=\left(\begin{array}{cccc}
-1 & 5 & 3 & 2 \\
6 & -1 & 0 & 4
\end{array}\right)
$$

to

$$
\left(\begin{array}{cc}
-1 & 3 \\
6 & 0
\end{array}\right)
$$

Then use oddment method and obtain

$$
\begin{aligned}
& \mathbf{p}=(0.6,0.4) \\
& \mathbf{q}=(0.3,0.7)
\end{aligned}
$$

Example 1

Don't forget that there are $\mathbf{4}$ strategies for II.

$$
A=\left(\begin{array}{cccc}
-1 & 5 & 3 & 2 \\
6 & -1 & 0 & 4 \\
4
\end{array}\right)
$$

Therefore

$$
\begin{aligned}
& \operatorname{maximin} \text { strategy for I: } \mathbf{p = (0 . 6 , 0 . 4)} \\
& \text { minimax strategy for II: } \mathbf{q = (0 . 3 , 0 , 0 . 7 , 0)} \\
& \text { value: } v=1.8
\end{aligned}
$$

Example 2

Solve the game matrix

$$
A=\left(\begin{array}{cccc}
-1 & -2 & 2 & -3 \\
2 & 1 & -3 & 4
\end{array}\right)
$$

Example 2

$$
A=\left(\begin{array}{cccc}
-1 & -2 & 2 & -3 \\
2 & 1 & -3 & 4
\end{array}\right)
$$

1. Draw a line for each column.

Example 2

$$
A=\left(\begin{array}{cccc}
-1 & -2 & 2 & -3 \\
2 & 1 & -3 & 4
\end{array}\right)
$$

2. Draw the polygonal curve for minimum y.

Example 2

$$
A=\left(\begin{array}{ccc}
-1 & \begin{array}{c}
-2 \\
2
\end{array} & \left.\begin{array}{cc}
2 \\
1 & -3 \\
-3 & 4
\end{array}\right)
\end{array}\right.
$$

3. Find the value of \boldsymbol{p} for the maximum point.

Example 2

We may reduce $A=\left(\begin{array}{cc}-1 \\ 2 & \begin{array}{cc}-2 \\ 1\end{array} \\ \hline 2 & -3 \\ -3 & 4\end{array}\right)$
to

$$
\left(\begin{array}{cc}
-2 & 2 \\
1 & -3
\end{array}\right)
$$

Then use oddment method and obtain

$$
\begin{aligned}
& \mathbf{p}=(0.5,0.5) \\
& \mathbf{q}=(0.625,0.375)
\end{aligned}
$$

Example 2

Therefore the solution of the game matrix

is

$$
\begin{aligned}
& A=\left(\begin{array}{ccc}
-1 & -2 & 2 \\
2 & -3 \\
1 & -3 & 4 \\
\hline
\end{array}\right. \\
& \text { rategy for I: } \mathbf{p}=(0.5,0.5)
\end{aligned}
$$

minimax strategy for II: $q=(0,0.625,0.375,0)$
value: $v=-0.5$

m-by-2 game

To solve \boldsymbol{m}-by-2 game

$$
A=\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
\vdots & \vdots \\
a_{m 1} & a_{m 2}
\end{array}\right)
$$

we may first solve the 2-by- m game

$$
A^{\prime}=-A^{T}=\left(\begin{array}{llll}
-a_{11} & -a_{21} & \cdots & -a_{m 1} \\
-a_{12} & -a_{22} & \cdots & -a_{m 2}
\end{array}\right)
$$

m-by-2 game

and obtain

maximin strategy for $\boldsymbol{A}^{\prime}: \quad \mathbf{p}^{\prime}=\left(p_{1}^{\prime}, p_{2}^{\prime}\right)$
minimax strategy for $\boldsymbol{A}^{\prime}: \quad \mathbf{q}^{\prime}=\left(q_{1}^{\prime}, \cdots, q_{m}^{\prime}\right)$
value of $A^{\prime}: v^{\prime}$
Then
maximin strategy for A : $\mathbf{p}=\mathbf{q}^{\prime}=\left(q_{1}{ }^{\prime}, \cdots, q_{m}{ }^{\prime}\right)$ minimax strategy for
value of $A: v=-v^{\prime}$

$$
\mathbf{q}=\mathbf{p}^{\prime}=\left(p_{1}^{\prime}, p_{2}^{\prime}\right)
$$

Example

Solve the game matrix

$$
A=\left(\begin{array}{cc}
1 & -6 \\
-5 & 1 \\
-3 & 0 \\
-2 & -4
\end{array}\right)
$$

Example

Solving

$$
A^{\prime}=-A^{T}=\left(\begin{array}{cccc}
-1 & 5 & 3 & 2 \\
6 & -1 & 0 & 4
\end{array}\right)
$$

we have

$$
\begin{array}{ll}
\text { maximin strategy of } \boldsymbol{A}^{\prime}: & \mathbf{p}^{\prime}=(0.6,0.4) \\
\text { minimax strategy of } \boldsymbol{A}^{\prime}: & \mathbf{q}^{\prime}=(0.3,0,0.7,0)
\end{array}
$$

value of $\boldsymbol{A}^{\prime}: \quad v^{\prime}=1.8$

Example

Therefore the solution to
is

$$
A=\left(\begin{array}{cc}
1 & -6 \\
-5 & 1 \\
-3 & 0 \\
-2 & -4
\end{array}\right)
$$

maximin strategy of $\boldsymbol{A}: \quad \mathbf{p}=\mathbf{q}^{\prime}=(0.3,0,0.7,0)$ minimax strategy of A :
$\mathbf{q}=\mathbf{p}^{\prime}=(0.6,0.4)$ value of A : $v=-v^{\prime}=-1.8$

Dominated strategy

1. We say that row R_{1} dominates row R_{2} if every entry of R_{1} is larger than or equal to the corresponding entry of $\mathbf{R}_{\mathbf{2}}$.
2. We say that column C_{1} dominates column C_{2} if every entry of C_{1} is less than or equal to the corresponding entry of C_{2}.

If a row (column) is dominated by another row (column), then it can be removed when finding the solution of the game.

Example 1

Solve the game

$$
A=\left(\begin{array}{cccc}
3 & 2 & -2 & 1 \\
-1 & -2 & 3 & 0 \\
0 & -1 & 4 & 3
\end{array}\right)
$$

Example 1

The second row is dominated by the third row.

$$
A=\left(\begin{array}{cccc}
3 & 2 & -2 & 1 \\
\hdashline 1 & 2 & 3 & 0 \\
0 & -1 & 4 & 3
\end{array}\right)
$$

The matrix is reduced to

$$
A^{\prime}=\left(\begin{array}{cccc}
3 & 2 & -1 & 1 \\
0 & -1 & 4 & 3
\end{array}\right)
$$

Example 1

Solving the 2-by-4 matrix $A^{\prime}=\left(\begin{array}{cccc}3 & 2 & -1 & 1 \\ 0 & -1 & 4 & 3\end{array}\right)$
the solution to A^{\prime} is

$$
\mathbf{p}^{\prime}=(0.8,0.2) \quad \mathbf{q}^{\prime}=(0,0.4,0,0.6) \quad v^{\prime}=1.2
$$

Don't forget that I has three strategies.
Now we may write down the solution to A

$$
\mathbf{p}=(0.8,0,0.2) \quad \mathbf{q}=(0,0.4,0,0.6) \quad v=1.2
$$

Example 2

Solve the game

$$
A=\left(\begin{array}{cccc}
1 & -1 & -3 & 4 \\
-3 & -2 & 2 & 1 \\
1 & -2 & -4 & -3 \\
2 & 0 & -1 & 3
\end{array}\right)
$$

Example 2

1. $3^{\text {rd }}$ row is dominated by $4^{\text {th }}$ row

$$
A=\left(\begin{array}{cccc}
1 & -1 & -3 & 4 \\
-3 & -2 & 2 & 1 \\
4 & 2 & -4 & -3 \\
2 & 0 & -1 & 3
\end{array}\right)
$$

Example 2

2. $4^{\text {th }}$ column is dominated by $2^{\text {nd }}$ column.

$$
A=\left(\begin{array}{cccc}
1 & -1 & -3 & 4 \\
-3 & -2 & 2 & 1 \\
4 & -2 & -4 & -3 \\
2 & 0 & -1 & 3
\end{array}\right)
$$

Example 2

3. $1^{\text {st }}$ row is dominated by $4^{\text {th }}$ row.

$$
A=\left(\begin{array}{cccc}
1 & 1 & -3 & 4 \\
-3 & -2 & 2 & 1 \\
4 & -2 & -4 & -3 \\
2 & 0 & -1 & 3
\end{array}\right)
$$

Example 2

The solution to the reduced matrix

$$
A^{\prime}=\left(\begin{array}{ccc}
-3 & -2 & 2 \\
2 & 0 & -1
\end{array}\right)
$$

is

$$
\mathbf{p}^{\prime}=(0.2,0.8) \quad \mathbf{q}^{\prime}=(0,0.6,0.4) \quad \mathrm{v}^{\prime}=-0.4
$$

Therefore the solution to A is

$$
\mathbf{p}=(0,0.2,0,0.8) \quad \mathbf{q}=(0,0.6,0.4,0) \quad v=-0.4
$$

Add the deleted rows and columns back

Exercise 1

Solve

$$
A=\left(\begin{array}{cc}
17 & 11 \\
-4 & 20 \\
5 & 17
\end{array}\right)
$$

Exercise 1

Exercise 1

$$
A^{\prime}=-A^{T}=\left(\begin{array}{ccc}
-17 & 4 & -5 \\
-11 & -20 & -17
\end{array}\right)
$$

the solution to A^{\prime} is

$$
\mathbf{p}^{\prime}=(0.33,0.67) \quad \mathbf{q}^{\prime}=(0.67,0,0.33) \quad v^{\prime}=-13
$$

The solution to \boldsymbol{A} is

$$
\mathbf{p}=(0.67,0,0.33) \quad \mathbf{q}=(0.33,0.67) \quad v=13
$$

Jamaican fishing

William Davenport:
Jamaican fishing, a game theory analysis;
Yale University Publications in Anthropology, No. 59

Jamaican fishing

Average profit per month of fisherman

		Current	
		Run	
Not run			
Fisherman	Inside only	17.3	
	Outside only	-4.4	
	In and Out	5.2	

Jamaican fishing

$$
A=\left(\begin{array}{cc}
17.3 & 11.5 \\
-4.4 & 20.6 \\
5.2 & 17.0
\end{array}\right)
$$

	Minimax solution	Real situation
Fisherman	$(\mathbf{0 . 6 7 , 0 , 0 . 3 3)}$	$(\mathbf{0 . 6 9 , 0 , 0 . 3 1)}$
Current	$(\mathbf{0 . 3 1 , 0 . 6 9)}$	$\mathbf{(0 . 2 5 , 0 . 7 5)}$
Expected profit	$\mathbf{1 3 . 3 1}$	$\mathbf{1 3 . 2 9}$

Jamaican fishing

When current uses $\mathbf{q}=(0.25,0.75)$,

$$
A \mathbf{q}=\left(\begin{array}{cc}
17.3 & 11.5 \\
-4.4 & 20.6 \\
5.2 & 17.0
\end{array}\right)\binom{0.25}{0.75}=\left(\begin{array}{l}
12.95 \\
14.35 \\
14.05
\end{array}\right)
$$

The best strategy for the fisherman is $(0,1,0)$, i.e. always fishing outside. However it is a relatively risky strategy.

Exercise 2

Solve the game

$$
A=\left(\begin{array}{llll}
3 & 5 & 6 & 4 \\
4 & 8 & 7 & 5 \\
6 & 3 & 1 & 2 \\
2 & 5 & 3 & 4
\end{array}\right)
$$

Exercise 2

Delete the dominated strategies in the $\operatorname{order} \boldsymbol{R}_{4}, \boldsymbol{C}_{\mathbf{2}}, \boldsymbol{R}_{\mathbf{1}}$.

$$
A=\left(\begin{array}{llll}
3 & 5 & 6 & 4 \\
4 & 8 & 7 & 5 \\
6 & 3 & 1 & 2 \\
2 & 5 & 3 & 4
\end{array}\right)
$$

Exercise 2

The reduced matrix is

$$
\left(\begin{array}{lll}
4 & 7 & 5 \\
6 & 1 & 2
\end{array}\right)
$$

Exercise 2

Therefore the solution is
maximum strategy for $\mathbf{I}: \mathbf{p}=(0,0.8,0.2,0)$
minimax strategy for II: $q=(0.6,0,0,0.4)$
value of $A: v=4.4$

Colonel Blotto game

Colonel Blotto was tasked to distribute his soldiers over 3 battlefields knowing that on each battlefield the party that has allocated the most soldiers will win and the payoff is the number of winning fields minus the number of losing fields.

Colonel Blotto game

If Colonel Blotto has \boldsymbol{n} platoons,
then the total number of
strategies he has is C_{2}^{n+2}.
Example: When $n=4$, Colonel
Blotto has $C_{2}^{6}=15$ strategies.

Colonel Blotto game

Suppose Colonel Blotto has 4 platoons and his enemy has 3 platoons. Then Colonel Blotto has 15 strategies while his enemy has 10 strategies. The game is represented by a 15-by-10 matrix.

Colonel Blotto game

However, we may simply it to a 4-by-3 matrix.

		Enemy		
		300	210	111
	400	$1 / 3$	$-1 / 3$	$-1 / 3$
Colonel Blotto	310	$2 / 3$	$1 / 3$	0
	220	$1 / 3$	$2 / 3$	1
	211	1	$2 / 3$	$1 / 3$

Expected payoffs of Colonel Blotto

Colonel Blotto game

Expected payoff when Colonel Blotto uses 220 strategy and Enemy uses 300 strategy is calculated in the table. Both players have 3 ways to distribute their army, so there are 9 possibilities.

Blotto	Enemy	Payoff
220	300	$-1+1+0=0$
220	030	$1+(-1)+0=0$
220	003	$1+1+(-1)=1$
202	300	$-1+0+1=0$
202	030	$1+(-1)+1=1$
202	003	$1+0+(-1)=0$
022	300	$-1+1+1=1$
022	030	$0+(-1)+1=0$
022	003	$0+1+(-1)=0$
Expected payoff:	$1 / 3$	

Colonel Blotto game

We may also fix the distribution of Blotto's army. To calculate the expected payoff when Colonel Blotto uses 310 and Enemy uses 210, only 6 distributions of Enemy's army are needed to be considered.

Blotto	Enemy	Payoff
310	210	1
310	201	1
310	120	0
310	102	1
310	021	-1
310	012	0
Expected payoff:		$1 / 3$

Colonel Blotto game

Then we need to solve the game matrix

$$
\left(\begin{array}{ccc}
1 / 3 & -1 / 3 & -1 / 3 \\
2 / 3 & 1 / 3 & 0 \\
1 / 3 & 2 / 3 & 1 \\
1 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Colonel Blotto game

The first two rows are dominated.

$$
\left(\begin{array}{ccc}
1 / 3 & -1 / 3 & -1 / 3 \\
2 / 3 & 1 / 3 & 0 \\
1 & 1 / 3 & 1 \\
1 / 3 & 2 / 3 & 1 \\
1 & 2 / 3 & 1 / 3
\end{array}\right)
$$

Colonel Blotto game

The matrix is reduced to $\left(\begin{array}{ccc}1 / 3 & 2 / 3 & 1 \\ 1 & 2 / 3 & 1 / 3\end{array}\right)$
C_{3}

Colonel Blotto game

maximum strategy for Colonel Blotto:

$$
\mathbf{p}=(0,0,0.5,0.5)
$$

(Using each of 220 and 211 with a probability of 0.5 .) minimax strategy for Enemy:

$$
\mathbf{q}=(s, 1-2 s, s), 0 \leq s \leq 0.5
$$

(For example using 210 constantly.)
value of the game:

$$
v=\frac{2}{3}
$$

Note that the minimax strategy for Enemy is not unique.

